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Demixing in Isotropic Binary Mixtures of
Rodlike Macromolecules

P. C. Hemmer1

Received August 26, 1999

A binary mixture of long rigid rods of diameters Di and lengths L i (i=1, 2) may
demix into two isotropic phases, and we give necessary conditions on the
molecular size parameters for this transition to exist. These conditions imply
that the two diameters must be sufficiently unequal, D2 �D1>( 9

7+ 4
7 - 2)2, or

D2 �D1<( 9
7& 4

7 - 2)2, while the length ratio is limited to an interval
f&(D2 �D1)<L2�L1< f+(D2 �D1). The functions f\ are given explicitly.
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1. INTRODUCTION

For a monodisperse solution of thin hard rods, Onsager's theory, (1) exact
in the limit of the diameter-to-length ratio going to zero, yields a first-order
transition between an isotropic phase and a nematic phase. The generaliza-
tion of Onsager's theory to binary mixtures shows that in addition to the
isotropic-nematic transition, (2�3) demixing transitions both in the nematic
phase(4�5) and in the isotropic phase(6�8) may appear, as well as associated
three-phase equilibria. The existence of each of these demixing transitions
depends on the diameter and length ratios, D2 �D1 and L2 �L1 , for the
species. For the existence of the demixing transition in the nematic phase
there exist explicit results (using gaussian parametrization of the orienta-
tional distribution functions) for arbitrary length and diameter ratios.(10)

The present article deals with the demixing transition in the isotropic phase.
The demixing transition in the isotropic phase has been shown to exist

only in three very special cases. The first(6) is in the limit when D2 �D1 � 0,
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the second(7) is for a mixture in which L1D2
1=L2D2

2 , and the third (8�9) is
for equal lengths, L1=L2 . Isotropic demixing is not seen in the much-
studied case of rods with equal diameters (D1=D2). In the present article
we study general diameter and length ratios, and determine by simple
analytic means necessary conditions for the demixing transition to exist. In
the concluding paragraph we compare our results to the special cases just
mentioned.

2. FREE ENERGY FUNCTIONAL

We consider a bidisperse solution containing N1 hard rods of diameter
D1 and length L1 , and N2 rods of diameter D2 , with aspect ratios Li �Di

so large that Onsager's theory applies. We will also use the notation
D2 �D1=d and L2 �L1=l. The distribution of directions 0 of the rods of
type i is described by a probability density fi (0), normalized so that

| f i (0) d0=1 (1)

The basic equations for a multicomponent Onsager mixture are well
known(5) so we just summarize them briefly. The Helmholtz free energy
contains mixing entropy terms, orientational entropy terms, and excluded
volume contributions. The difference 2F between the free energy of the
solution and the solvent is given by

2F
(N1+N2) kBT

=ln c+ :
2

i=1

xi ln xi+ fang+ fexcl (2)

where c=(N1+N2)�V is the number density, x i is the mole fraction of
species i, while kB , T and V have their usual meaning,

fang= :
2

i=1

xi | fi (�) ln[4?fi (�)] d0 (3)

measures the orientational entropy, while

fexcl=
1
2c :

2

i=1

:
2

j=1

x ix j\ijL iLj (Di+Dj) (4)

is the contribution to the free energy due to excluded-volume effects. Here

\ij=|| |sin #| f i (�) fj (�$) d0 d0$ (5)
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is the average of |sin #|, #(0, 0$) being the angle between a rod of type i
and one of type j. An additive constant in (2) is omitted.

The minimalization of the free-energy functional (2) with respect to
the orientational distribution functions fi yields the following set of integral
equations

c :
2

j=1

xjLiL j (D i+Dj) | |sin #(0, 0$)| fj (�) d0$+ln[4?f i (�)]=* i (6)

where the constants *i are fixed by the normalization conditions (1).
A priori one might consider the possibility that in one phase one com-

ponent is isotropically distributed while the other is not. However, using in
(6) the Legendre function expansion(11)

|
2?

0
|sin #(0, 0$)| d.

=2? :
�

n=0

cn P2n(cos �) P2n(cos �$), with c0=
1
4

?; (7)

cn=&
(4n+1)[(2n&1)!!]2

22n+2(2n&1) n ! (n+1)!
? (n�1)

it is trivial to show that if one component is isotropically distributed
( f (�)=1�4?), the other is also.

For sufficiently high densities an isotropic phase has a first-order
transition to a nematic phase. For a one-component system the transition
corresponds to coexisting dimensionless densities ĉ= 1

4 ?L2 Dc equal to
ĉ&3.290 and ĉ&4.191. For part of the discussion it will be convenient to
introduce scaled densities

ĉi=
1
4 ?L2

i Dicxi (8)

so that in these variables the isotropic-nematic transitions for the pure
components are identical in form.

3. CRITICAL POINT OF ISOTROPIC-ISOTROPIC TRANSITION

In isotropic phases the Helmholtz free energy (2) simplify since fang=0
and \=?�4. The corresponding chemical potentials

+i=\�2F
�N i +T, V, Nj
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can be expressed as

;+1=ln ĉ1+2ĉ1+ĉ2 l&1(1+d&1) (9)

;+2=ln ĉ2+2ĉ2+ĉ1 l(1+d ), (10)

apart from an unimportant additive constant.
We locate a possible critical point by equating to zero the first and

second derivative of the chemical potential +1 with respect to the density
ĉ1 , at constant chemical potential of the other species.

First we eliminate ĉ2 using (9):

ĉ2=
ld

1+d
(;+1&ln ĉ1&2ĉ1) (11)

Insertion into (10) and differentiation with respect to ĉ1 at constant +2

yields

�(;+1)
�ĉ1

=
1
ĉ1

+2&
l(1+d )

(;+1&ln ĉ1&2ĉ1)&1+2dl�(1+d )
(12)

A second differentiation yields

�2(;+1)
�ĉ2

1

= &
1
ĉ2

1

+
l(1+d )

[(;+1&ln ĉ1&2ĉ1)&1+2dl�(1+d )]2

_
(&�;+1 ��ĉ1+2+1�ĉ1)

(;+1&ln ĉ1&2ĉ1)2 (13)

Equating the first and the second derivative, (12) and (13), to zero and
eliminating +1 , we obtain

l=
(1+d )3 ĉ1

(1+2ĉ1)[(1&d )2 ĉ1&2d]2 (14)

The value of ĉ2 follows from (11) and the critical value of +1 just deter-
mined through �+1 ��ĉ1=0:

ĉ2=
(1+2ĉ1) d

(1&d )2 ĉ1&2d
(15)

Due to our scaling this relation is symmetric in ĉ1 and ĉ2 :

1+2ĉ1+2ĉ2=(1&d )2 d&1ĉ1 ĉ2 (16)
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For a fixed d this is a hyperbola in the ĉ1 , ĉ2 plane, shown in Fig. 1.
A point on the hyperbola corresponds to a definite length ratio l, given
by (14).

4. STABILITY OF ISOTROPIC PHASES

With increasing density the isotropic solution of the integral equations
(6) will be unstable in the sense that a nonisotropic perturbation of the
orientational distribution functions can lower the free energy. For the one-
component system this first occurs(11) at ĉ=4, a density in the transition
region. At this density a second solution, f &1�4? B P2(cos �) bifurcates
from the isotropic solution. It is straightforward to generalize this proce-
dure to the bidisperse situation, by finding the criterion for a non-isotropic
integral equation solution

4?fi (�)=1+=:i P2(�) (17)

deviating infinitesimally from an isotropic solution, to exist. This criterion
is useful since it provides an exact analytic bound for the presence of the
isotropic phase. The bound also serves as an indication of the location of
the isotropic-nematic transition.

Insertion of (17) into (6), linearizing, and using the Legendre function
expansion (8) we obtain

:
j

[$ij&
1
32 ?cx jLi Lj (Di+Dj)] :j=0 (18)

In terms of the dimensionless densities (8), the determinant of this set of
homogeneous equations equals

}$ijj&
1
8

ĉj
Li

Lj \1+
Di

Dj+}=0 (19)

Written out for the bidisperse case, this takes the form

4&ĉ1&ĉ2& 1
16 (d&1)2 d&1ĉ1 ĉ2=0 (20)

For the monodisperse systems the value ĉi=4 is recovered, and for equal
diameters (d=1) the simple result ĉ1+ĉ2=4 agrees with Vroege and
Lekkerkerker.(5) Note the important role of the diameter ratio, since for
large d, ĉ1+ĉ2 can be low as 16�- d.

The relation (16) is a hyperbolic relation between the critical densities
ĉ1 and ĉ2 . If this hyperbola is located wholly on the high-density side of the
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File: 822J 255406 . By:XX . Date:13:06:00 . Time:10:10 LOP8M. V8.B. Page 01:01
Codes: 1846 Signs: 1033 . Length: 44 pic 2 pts, 186 mm

bifurcation hyperbola (20), no isotropic-isotropic transition is present (see
Fig. 1). The borderline case is when the hyperbolas touch, which by sym-
metry must occur at ĉ1=ĉ2 . The borderline case corresponds to ĉ1=ĉ2= 7

4

and (d&1)2�d=128�49. The two solutions of the equation for the bor-
derline diameter are d0 and 1�d0 , with

d0=( 9
7+ 4

7 - 2)2=4.38415 (21)

Thus no isotropic-isotropic demising occurs when

d # (( 9
7& 4

7 - 2)2, ( 9
7+ 4

7 - 2)2)& (0.228, 4.384) (no demixing) (22)

The corresponding length ratios follow from Eq. (14). d0 and 1�d0

correspond to

l0= 9
7& 4

7 - 2 or 1�l0= 9
7+ 4

7 - 2 (23)

respectively. Note that d0 l 2
0=1.

For d>d0 part of the critical point hyperbola (16) is outside the
unstable high-density region. This part corresponds to

c&<ĉ1<c+ , where c\= 1
4(7\- 49&128d(d&1)&2) (24)

Fig. 1. Line of critical points in the density-density plane, fully drawn on the low-density
side of the bifurcation line (dotted), dashed on the unstable high-density side of the bifurca-
tion line. The ĉi are the scaled densities (8). The figure corresponds to D2=5D1 .
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Fig. 2. Stability dependence on the diameter ratio D2 �D1 and length ratio L2 �L1 . In the cen-
tral region no demixing can occur since the critical point is unstable. The upper boundary
approach L2 �L1=28 for D2 �D1 � �. The dashed lines correspond to the borderline
diameters (22).

Here c&� 7
4�c+� 7

2. The density interval (24) corresponds via (14) to an
interval of length ratios,

f&(d )<l< f+(d ) (25)

When d increases from d0 to infinity, f&(d ) decreases from l0 to zero, while
f+(d ) increases from l0 to 28. For large d

f&(d )= 1
28 d&1+O(d&2); f+(d)=28& 1828

7 d&1+O(d&2) (26)

Thus there can be no isotropic-isotropic demixing when l> f+(d ) or
l< f&(d ).

Figure 2 shows the set of molecular size parameters for which we
now have demonstrated the absence of demixing. The figure is of course
invariant under simultaneous inversion of both ratios (i.e., d � 1�d, l � 1�l ).
For equal lengths (l=1) no demixing occurs for diameter ratios in the
interval (0.22079, 4.52921).

5. CONCLUDING REMARKS

We have derived necessary conditions for isotropic demixing to occur.
In order to locate the necessary and sufficient conditions, i.e., to find
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precisely where the isotropic-nematic phase transition preempts the
isotropic demixing, numerical solutions of the coupled integral Eqs. (6)
for the two orientational distribution functions must be performed, for
different densities and compositions. This is not done here.

We can check how our results compare with the special cases that
have been discussed in the literature. For d � 0 the critical condition (16)
reduces to

l=
1

ĉ1+2ĉ2
1

(27)

and the stability condition (20) to

4=ĉ1(1+ 1
16 \2), \2=ĉ2 �d (28)

in agreement with Sear and Jackson (their Eqs. (14) and (31)).
Sear and Mulder(7) studied the symmetric-mixture case, defined by

l 2d=1, and found that isotropic demixing first appears when their
parameter $=2�(l+l&1) is ``slightly below 0.75.'' This is consistent with
our stability criterion for this case, $<2(l0+l&1

0 )= 7
9=0.777. Evidently the

transition appears fairly close to the stability threshold.
For L1=L2 our precise stability requirement is d>4.52921. This is

consistent with the conclusion of van Roij and Mulder(8) that ``demixing
sets in well before the orientational ordering if d is sufficiently large, at least
larger than about dr5.'' Subsequently van Roij, Mulder and Dy� kstra(9)

found that for d=8 isotropic-isotropic coexistence exists, while it is
preempted by the isotropic-nematic transition for d=7.

A final remark is that it is not surprising that demixing requires the
diameters of the two components to be sufficiently different. This is
reminiscent of demixing in fluid hard-sphere mixtures which apparently
requires the diameters of the two species to be sufficiently different, the
necessary ratio estimated(12) to be of the order of 5. However, that the
lengths of the two components must not be too different is unsuspected and
remarkable.
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